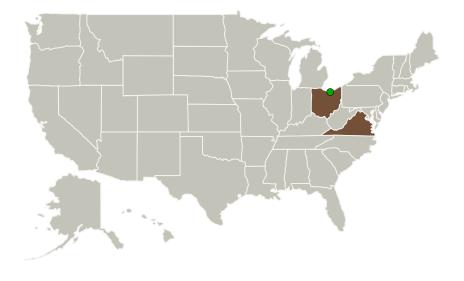
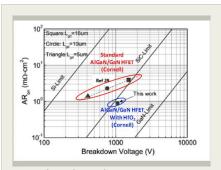
Small Business Innovation Research/Small Business Tech Transfer

500C/3.8 kW-class Resonant-Mode Power Converter featuring SiC Super Junction Transistors, Phase I




Completed Technology Project (2013 - 2013)

Project Introduction

Capitalizing on a potent confluence of expertise in III-Nitride epitaxy, GaN-Si power device designs, and wide-bandgap power electronics, researchers at GeneSiC Semiconductor and Cornell University jointly propose a SBIR program focused on the development of 15 kW/300°C-rated power converters using AlGaN/GaN-Si MOS-HFETs and Schottky rectifiers. The proposed AlGaN/GaN-Si power converters to be developed in this program will usher in a new generation of high-efficiency, low-cost, and radiation-hard power conversion units on-board future NASA spacecraft. Phase I of this proposed work will focus on the optimization of the design and fabrication of the AlGaN/GaN-Si MOS-HFET and NSJ SBR devices. Phase II will be focused on the design and integration of Si/GaN gate-drive circuitry with the power SBRs and transistors to create high-power integrated circuits. Another major objective during Phase II will be the construction of Rad-Hard packaging for the power ICs. At the end of Phase II of this program, a fully-functional 15 kW/300°C rated power converter IC equipped with AlGaN/GaN-on-Si MOS-HFETs, Natural SuperJunction (NSJ) SBRs as free-wheeling diodes and on-chip SiC or III-Nitride gate drive circuitry will be demonstrated at a switching frequency of ≥ 1 MHz and at a temperature of ≥ 300°C. As compared to the existing state-ofthe-art power electronics technology, the proposed AlGaN/GaN-on-Si power converters will offer (A) Lower on-state losses, 300°C operation and 1 MHz switching capability (B) A Lateral device architecture, which is highly desirable for construction for monolithic power integrated circuits (C) Possibility of hybrid interconnection of III-Nitride Power Devices with on-chip Rad-Hard AlGaN/GaN Gate Drive Circuitry (D) Desirable Normally-OFF Power Switches.

Primary U.S. Work Locations and Key Partners

500C/3.8 kW-class Resonant-Mode Power Converter featuring SiC Super Junction Transistors

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

500C/3.8 kW-class Resonant-Mode Power Converter featuring SiC Super Junction Transistors, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
GeneSiC Semiconductor Inc.	Lead Organization	Industry Minority-Owned Business, Small Disadvantaged Business (SDB)	Dulles, Virginia
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Ohio	Virginia

Project Transitions

0

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140697)

Images

Project Image

500C/3.8 kW-class Resonant-Mode Power Converter featuring SiC Super Junction Transistors (https://techport.nasa.gov/imag e/136493)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

GeneSiC Semiconductor Inc.

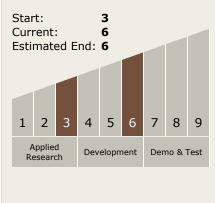
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Siddarth Sundaresan

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

500C/3.8 kW-class Resonant-Mode Power Converter featuring SiC Super Junction Transistors, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

